erbox

erosita/erbox-1.7

Summary:

Detect sources using a modified sliding box algorithm.

Description:

The task ERBOX searches the input images for sources that are brighter than the expected background fluctuations at a given image position. A likelihood threshold can be specified with parameter likemin, where
 likemin = -ln (P)
Where P is the probability that the count value in the detection box is caused by a background fluctuation.
The background in a detection box is either take from the optional background map  bkgima_flag="Y" or
is interpolated from a frame shaped region around the  detection box.
The box size is specified by paramter  boxsize, the side length of the box is 2*boxsize+1.

When boxsize=4 (the default value), the counts in the box will be weighted with a beta function, adapted in width 
to the approximate eROSITA PSF.
The sensitivity for extended sources can be increased by running nruns iterations of the algorithm, where
the image is rebinned by a factor 2**(n-1) in each iteration, effectively increasing box size and width of the 
beta function by the same factor.



Parameters:

  • images [="image.fits"] (string_array) OPTIONAL
    • Input image(s)
  • boxlist [="boxlist.fits"] (string) OPTIONAL
    • Output source list file
  • expimages [="expimage.fits"] (string_array) OPTIONAL
    • Exposure map(s)
  • detmasks [="detmask.fits"] (string_array) OPTIONAL
    • Detection mask(s)
  • bkgimages [="bkgimage.fits"] (string_array) OPTIONAL
    • Background maps(s)
  • emin [=500.] (real_array) OPTIONAL
    • Minimum energies [PI channels]
  • emax [=2000.] (real_array) OPTIONAL
    • Maximum energies [PI channels]
  • ecf [=1.0] (real_array) OPTIONAL
    • Energy conversion factors
  • hrdef (string) OPTIONAL
    • Energy bands used for hardness ratios
  • nruns [=3] (integer) OPTIONAL
    • Number of compression steps
  • likemin [=6.0] (real) OPTIONAL
    • Minimum boxlist detection likelihood
  • boxsize [=4] (integer) OPTIONAL
    • Detection box size (half_width-0.5) [pixel]
  • compress_flag[=N] (boolean) OPTIONAL
    • Use memory saving image handling
  • expima_flag[=Y] (boolean) OPTIONAL
    • Use exposure maps
  • detmask_flag[=Y] (boolean) OPTIONAL
    • Use detection mask
  • bkgima_flag[=Y] (boolean) OPTIONAL
    • Use background maps

Input files:

  • images
  • expimages
  • detmasks
  • bkgimages

Output files:

  • boxlist

Examples:

Simultaneous detection on 2 input images in local mode:
  erbox images="image05-2keV.fits  image2-5keV.fits" \
        boxlist="boxlist.fits" \
        expimages="image05-2keV_expmap.fits  image2-5keV_expmap.fits" \
        detmasks="detmask.fits" \
        emin="500 2000" \
        emax="2000 5000" \
        hrdef="1 2" \
        ecf="1.0" \
        nruns=3 \
        likemin=6. \
        boxsize=4 \
        compress_flag="N" \
        bkgima_flag="N" \
        expima_flag="Y" \
        detmask_flag="Y"




Simultaneous detection on 2 input images in map mode:

  erbox images="image05-2keV.fits  image2-5keV.fits" \
        boxlist="boxlist.fits" \
        expimages="image05-2keV_expmap.fits  image2-5keV_expmap.fits" \
        bkgimages="image05-2keV_bkg.fits  image2-5keV_bkg.fits" \
        detmasks="detmask.fits" \
        emin="500 2000" \
        emax="2000 5000" \
        hrdef="1 2" \
        ecf="1.0" \
        nruns=3 \
        likemin=6. \
        boxsize=4 \
        compress_flag="N" \
        bkgima_flag="Y" \
        expima_flag="Y" \
        detmask_flag="Y"